SYSTEM ASPECTS OF RENEWABLE ENERGY SOURCES AND PROMOTION SCHEMES

Jaroslav Knápek

Czech Technical University in Prague (CVUT)

CONTENT OF LECTURE

System aspects of renewable energy sources (RES)

- Pros and cons of RES compared to fossil fuels
- Why RES has increasing importance in energy policies of MDC's
- Potentials of RES from technical to economic potential

The Czech Energy Policy – the role of RES

- Potentials of different RES in the Czech conditions
- Fossil fuels and RES
- Dominant role of biomass in the Czech Energy Policy
- The current state of RES utilization in ČR facts and figures

Promotion schemes for RES

- What is the goal of RES support the different points of view
- Introduction to RES economic basics on economic effectiveness of projects
- Two views on price of electricity (heat) from RES supply and demand curves
- Promotion scheme for RES utilization for electricity generation case example of the Czech Republic

WHAT ARE RENEWABLE ENERGY SOURCES ?

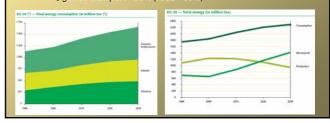
EU Directive 2001/77 definition:

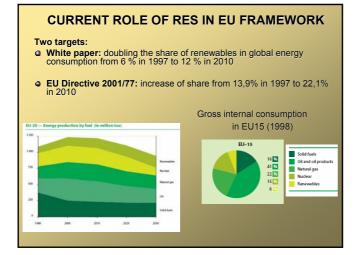
- renewable non-fossil energy sources (wind, solar, geothermal, wave, tidal, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases);
- 'biomass' shall mean the biodegradable fraction of products, waste and residues from agriculture (including vegetal and animal substances), forestry and related industries, as well as the biodegradable fraction of industrial and municipal waste;

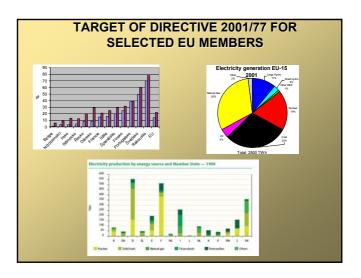
Solar energy

- Primary: solar radiation
- Secondary: Wind energy, wave energy, biomass incl. residual biomass, (potential) energy of water (rivers)

Sun and Moon motion - Tidal energy


Decay of radioactive elements - Geothermal energy

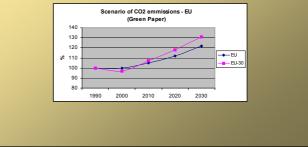

EU AND INCREASING DEMAND FOR ENERGY


 EU's demand for energy has been growing at a rate of between 1-2 % since 1986 (esp. transportation, electricity, tertiary sector)

rapid increase o energy consumption in transport sector

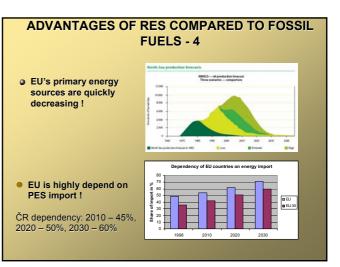
- 67% of current oil demand (1998: 298 mil.toe, 1986: 203 mil. toe)
 1998: 189 mil vehicles, 1985: 132 mil. vehicles)
- expectation up to 2010:
 passenger transport + 19% (16% road use, 90% air transport)
 goods transport +38% (road +50%)

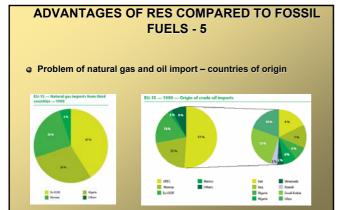
ADVANTAGES OF RES COMPARED TO FOSSIL FUELS


Why RES has increasing importance in energy policies of developed countries ?

- Non fossil energy sources they do not contribute to GHG emissions or can directly contribute to their decrease (e.g. biogas or landfill gas utilization)
 - total emissions of GHG's by the EU15 are expected to increase by at least 5.2 % between 1990 and 2010, if no action is taken.
- Major role of transport
 - Although transport accounts for only 28% of total CO₂ emissions, it will be the main reason for the European Union failing to meet the commitments given at Kyoto unless radical changes are made rapidly
 - In particular, 90% of the expected increase in CO₂ between 1990 and 2010 will be attributable to the transport sector.

ADVANTAGES OF RES COMPARED TO FOSSIL FUELS - 2


Renewable energy sources can help with Kjoto targets


BAU scenario without additional policies

ADVANTAGES OF RES COMPARED TO FOSSIL FUELS - 3

- Reduction of classical emissions e.g. SO₂, NO_x
- Reduction of waste e.g. wastes from burning
- Saving of non renewable sources implication to intergeneration solidarity – concept of sustainable development - contribution towards sustainability
- Symbol of increasing responsibility of developed countries in 90's
- Increases in local employment and income dominant role of biomass, biomass can help with solving of agricultural policy of EU opens new business for countryside and agricultural regions
- Increase of energy independency RES are generally accessible
- Diversification of energy sources and reduction of import dependency - increased importance after September 11, 2001

DISADVANTAGES OF RES

- (very) low density of energy large areas to collect enough energy are needed
- dependency on external (natural, uncontrolled) conditions so called dependent production – one cannot mechanically compare kWh from RES and classical sources
- typically cannot directly compete with "classical" energy sources

Economic implications:

- Potential distortions on opening energy markets
- Energy markets leads to appraisal (evaluation) of electricity based on its features
- Higher utilisation of RES cause can decrease national economy competitiveness on global markets

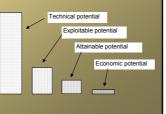
DISADVANTAGES OF RES - 2

The economic and social system is based on centralised development around conventional sources of energy (coal, oil, natural gas and nuclear energy) and above all, around the generation of electricity

POTENTIALS OF RES – FROM TECHNICAL TO ECONOMIC POTENTIAL

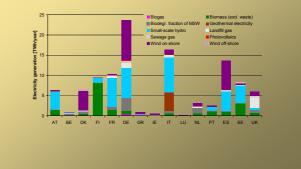
Understanding of different meaning

- Technical done by source presence and by conditions of energy transformation (only theoretical meaning)
- Exploitable (available) potential part of technical potential that can be used currently available technologies and limitations are done by legal, ecological and other limitations
- Attainable potential part of exploitable potential that can be used for energy purposes
- Economic potential part of available potential that can be used based on current economic condition influencing economic effectiveness of project for investors


POTENTIALS OF RES – FROM TECHNICAL TO ECONOMIC POTENTIAL - 2

Understanding of different meaning

ČR example of potential relation – wind power:


- Technical potential: theoretical figure
- Exploitable potential: app. 3800 MW
 Attainable potential (year 2010): 460 MW
- Attainable potential (year 2010): 460 MW
 Economic potential (year 2010): depends on value of feed-in tariff

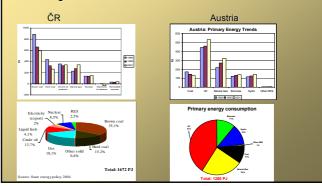
Potentials depends on natural conditions, availability of technologies, economic power and political strategy of given country !

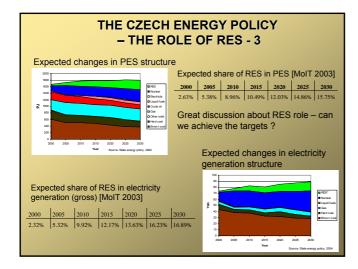
DOCUMENTATION OF DIFFERENT RES POTENTIALS IN EU COUNTRIES

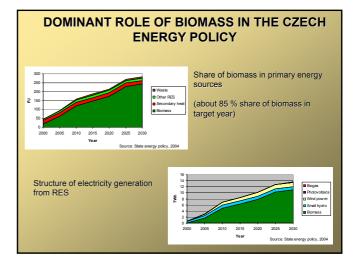
Electricity generation from various RES in EU-15 countries in 2001

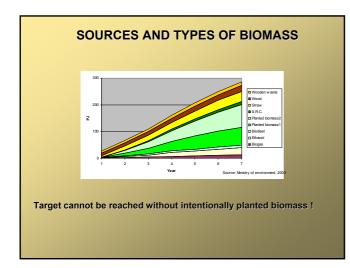
THE CZECH ENERGY POLICY – THE ROLE OF RES

Czech Energy policy (2004)

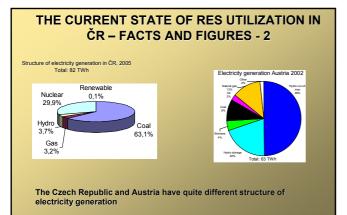

- basic component of economic policy
- vision state priorities and concrete targets, outlook up to 2030
- list of instruments and measures for reaching the targets
- basic document for preparation of other related policies


Goals


- Maximization of energy efficiency,
- effective structure of primary energy sources,
- environmental concern,
- accomplishment of transformation and liberalization of energy sector


THE CZECH ENERGY POLICY – THE ROLE OF RES - 2

Decreasing role of coal in ČR - from 65% in 1990 to 51% in 2001



THE CURRENT STATE OF RES UTILIZATION IN ČR – FACTS AND FIGURES

Share of biomass on total RES utilization in ČR, 2003 [MPO statistics]

	Heat production (GJ)	Gross electricity generation (GJ)	Produced energy (GJ)	Share on PES	Share on energy production from RES
Biomass*/	29 625 688	1 342 701	30 968 389	1,7462 %	73,97 %
Biodegradable part of waste	2 047 484	34 519	2 082 003	0,1174 %	4,97 %
Biogas	780 639	388 282	1 168 921	0,0659 %	2,79 %
Hydro power	0	4 980 481	4 980 481	0,2808 %	11,89 %
Wind power	0	14 040	14 040	0,0008 %	0,03 %
Liquid fuels **/	2 660 000	0	2 660 000	0,1500 %	6,35 %
Total/***	35 113 811	6 760 023	41 873 835	2,3611 %	100,00 9

/*production outside household and estimate for households, /** CZSO estimate consumption for driving mechanisms, /*** heat pumps and solar energy not included

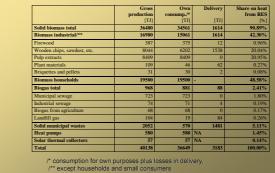
THE CURRENT STATE OF RES UTILIZATION IN ČR – FACTS AND FIGURES - 3

Electricity generation from RES including expectations for 2005 and 2006 [ERO statistics]

	2001	2004	2005	2006	2010
	[MWh]	[MWh]	[MWh]	[MWh]	[MWh]
Small hydro (<10 MW)	826228	842840	914000	930000	1121000
Photovoltaic	0	19	0	111	15000
Wind energy	591	9901	76000	180000	930000
Geothermal energy	0	0	0	0	15000
Biomass incl. co-combustion	117	355207	665000	660000	2100000
Biogas	5824	90497	99000	160000	250000
TOTAL	832760	1298464	1754000	1930111	4431000

THE CURRENT STATE OF RES UTILIZATION IN ČR – FACTS AND FIGURES - 4

Development of RES-E share on Czech gross electricity consumption [ERO statistics]


2001	2002	2003	2004	2005*	2010**
833	953	785	1299	1754	4431
129	19	36	-	-	-
1497	1864	967	1619	1600	1600
2459	2836	1788	2918	3354	6031
65108	64961	67014	68616	68522	75382
3,78	4,37	2,67	4,25	4,89	8
	833 129 1497 2459 65108	833 953 129 19 1497 1864 2459 2836 65108 64961	833 953 785 129 19 36 1497 1864 967 2459 2836 1788 65108 64961 67014	833 953 785 1299 129 19 36 - 1497 1864 967 1619 2459 2836 1788 2918 65108 64961 67014 68616	833 953 785 1299 1754 129 19 36 - - 1497 1864 967 1619 1600 2459 2836 1788 2918 3354 65108 64961 67014 68616 68522

*/ expectation ERO, /** possible scenario of meeting Directive 2001/77 target

EU Directive 2001/77 target up to the year 2010: 8%

THE CURRENT STATE OF RES UTILIZATION IN ČR – FACTS AND FIGURES - 5

Structure of heat generation from RES in ČR, 2004 [MPO 2004]

THE CURRENT STATE OF RES UTILIZATION IN ČR – FACTS AND FIGURES - 6

Structure of total biomass utilization, ČR, 2004 [MPO 2004]

Biomass type	Utiliz	Total [t]	
	electricity [t]	heat [t]	
Wooden chips, sawdust, w. waste etc.	243834	864912	1108747
Firewood	-	36794	36794
Plant materials	11590	11498	23087
Briquettes&pellets	1227	2251	3478
Pulp extracts	157203	862042	1019245
TOTAL	413854	1777497	2191351
Estimate of wood consumption in house	1500000		
Biomass export (suitable for energy purposes)			
TOTAL			4014306

PROMOTION SCHEMES FOR RES

What is the goal of RES support - the different points of view Similar effects of different tools

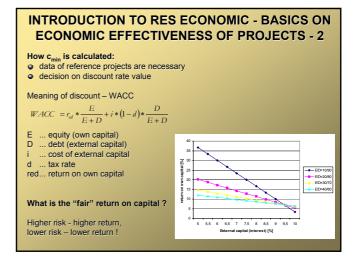
- RES for electricity generation
- RES for heat production and delivery (industrial, households)
- Energy savings
- Energy efficiency (e.g. cogeneration) .
- One cannot concentrate only at EU Directive 2001/77 targets !
- What are the system goals ? Just RES support ?
- Economic rule about scarce resources invest into fields with highest marginal effects !
- Is it rational to use biomass for electricity generation ?

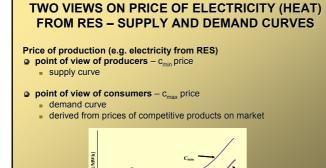
INTRODUCTION TO RES ECONOMIC - BASICS ON ECONOMIC EFFECTIVENESS OF PROJECTS

Private investors run RES projects

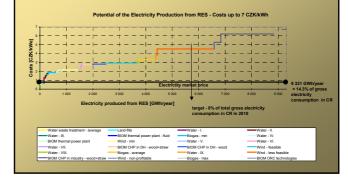
 $\sum_{t=1} Q_t \cdot \left| \frac{(1+r_n)}{(1+\inf)} \right|$

Investors expects (fair, adequate, required) rate of return on capital invested – they need to sell at least for the minimum price cmin ۲


$$NPV = \sum_{i=1}^{T_{c}} CF_{i} \cdot (1+r_{s})^{-t} = 0 \qquad \sum_{i=1}^{T_{c}} c_{\min,i} \cdot \underline{\mathcal{Q}}_{i} \cdot (1+r_{s})^{-t} = \sum_{i=1}^{T_{c}} V_{i} \cdot (1+r_{s})^{-t}$$


$$c_{\min1} \cdot \sum_{i=1}^{T_{c}} (1+\inf)^{i} \cdot \underline{\mathcal{Q}}_{i} \cdot (1+r_{s})^{-t} \cdot (1+\inf)^{-t} = \sum_{i=1}^{T_{c}} V_{i} \cdot (1+r_{s})^{-t}$$

$$c_{\min1} = \frac{\sum_{i=1}^{T_{c}} V_{i} \cdot (1+r_{s})^{-t}}{\sum_{i=1}^{T_{c}} Q_{i} \cdot (1+r_{s})^{-t}} = \frac{\sum_{i=1}^{T_{c}} V_{i} \cdot (1+r_{s})^{-t}}{\sum_{i=1}^{T_{c}} Q_{i} \cdot (1+r_{s})^{-t}} \qquad \textbf{O} \quad NPV=0 \text{ mean production is price and inverse.}$$

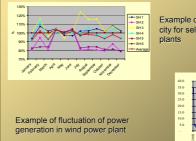

NPV=0 means that production is sold for c_{min} price and investor gains rate of return equal to discount rate !

 $+r_{r})^{-1}$

TWO VIEWS ON PRICE OF ELECTRICITY (HEAT) FROM RES – SUPPLY AND DEMAND CURVES - 3

roduction for given supp

Demand curve - point of view of consumers


ET.

- Technical features of production are taken into account
 - Reliability
 - Diagram of delivery
 - Possibility of regulation
 - Electricity: power and system services
- Competition of different producers
- Role of electricity market

TWO VIEWS ON PRICE OF ELECTRICITY (HEAT) FROM RES – SUPPLY AND DEMAND CURVES - 4

RES and electricity generation

typical problem of dependency on actual external conditions

xample of utilization of available capa-
ity for selected small hydro power
lante

40.0	
35.0	
30.0 25.0	
20.0	
15.0	
10.0 5.0	
	L.1.2002 L.3.2002 L.3.2002 L.4.2002 L.4.2002 L.4.2002 L.3.2002 L.1.2.2002 L.1.2.2002 L.1.2.2002

MEASURES FOR CHANGING POSITION OF SUPPLY AND DEMAND CURVES

How support renewables – case example of electricity generation affection of supply or demand curves

Moving supply curve down

- investment subsidy
- operational subsidy related to power generation green bonus
- reduction of investors risk investment to R&D, good conditions for investors
- reduction of cost of financing preferential loans (zero or reduced interest)
- tax exemptions (income tax holidays, real estate tax)
- green certificates sale of emission reduction
- combination of quota system and sale of certificates

MEASURES FOR CHANGING POSITION OF SUPPLY AND DEMAND CURVES - 2

Moving demand curve up

- feed-in tariff and obligation of purchase
- ouota system
- information campaigns (voluntary purchase of green electricity for higher price)
- ecological taxation imposed to classical electricity generation (carbon tax)
- emission allowances

Feed-in tariffs - widely used instrument

PROMOTION SCHEME FOR RES UTILIZATION FOR ELECTRICITY GENERATION IN ČR

- up to the year 2002 no system approach
 electricity sold at market conditions
 - only not guaranteed investment support from State environmental fund and Czech energy agency
- 2002-2005: regulatory authority set up feed-in tariffs on yearly base (price decisions of ERO) – no specific legislation
- 2003-5: discussions on legislation, several major changes
- from 2006: systematic support according to Act 180/2005

PROMOTION SCHEME FOR RES UTILIZATION FOR ELECTRICITY GENERATION IN ČR - 2

Main logic of Act 180/2005

- deals only with electricity generation
- feed-in tariffs and green bonus scheme producer choose for each year
- tariffs and bonuses are set up by ERO

feed-in tariff scheme:

- obligation of purchase for distribution company
- tariffs differentiated according to type of RES
- fixation of tariff for 15 year (annual adjustment by PPI)
- tariff should be set up for 15 year of payback time
- principle of time matrix tariffs are related to the year of placing into operation (next year tariffs – max, possible decrease 5%)

PROMOTION SCHEME FOR RES UTILIZATION FOR ELECTRICITY GENERATION IN ČR - 3

green bonus scheme

- electricity is sold for market price
- distribution company pays green bonus
- necessity to solve responsibility for deviations in electricity generation
- higher market risk is reflected in volume of bonus
- co-firing of biomass and coal can use only green bonus scheme

Open questions of Act 180/2005

- utilization of heat in combustion processes (ERO applied logic of "reasonable" utilization of originated heat)
- doesn't solve problem of parallel support
- differentiation of (solid) biomass utilization
- what will happen after 15 year

PROMOTION SCHEME FOR RES UTILIZATION FOR ELECTRICITY GENERATION IN ČR - 4

Logic of feed-in tariff

C_{min} (from NPV=0) is base for feed-in tariff setting

Logic of green bonus

- green bonus=c_{min}* market price
- c_{min}* is recalculated for adequate discount (level of risk)

Higher risk in green bonus scheme

- business risk
- depends on share of market price in c_{min}

PROMOTION SCHEME FOR RES UTILIZATION FOR ELECTRICITY GENERATION IN ČR - 5

Feed-in tariffs for the year 2006

	F. tariff	G, bonus
Type of RES		
.,,,	cE/kWh	cE/kWh
Small hydro (<10 MW)	8.21	5.02
Photovoltaic	46.32	44.18
Wind energy	8.63	7.09
Geothermal energy	15.79	12.77
Biomass	8.04-10.28	4.63-6.88
Biomass co-firing	-	1.89-4.14
Biogas stations	10.46	7.05
Landfill gas	7.82	4.42
Biogas - sewage plants	7.82	4.42

Note: Valid for new plants, 1 EUR=28.5 CZK, tariffs and bonuses are differentiated according to type of solid biomass used

PROMOTION SCHEME FOR RES UTILIZATION FOR ELECTRICITY GENERATION IN ČR - 6

Green bonuses calculation needs:

- c_{min}* (recalculation of c_{min} for given discount rate)
 - three categories of RES increase of discount by 0,5-1,5%
 - wind, photovoltaic, geothermal/biomass and biogas applications/small hydro
 - modification of discount rate by share of revenues from electricity sale on total revenues

estimates of market price

- depends of price and diagrams of electricity at electricity market (for given year)
- wind 18,95 EUR/MWh
- photovoltaic 28,42 EUR/MWh
- all other RES 37,26 EUR/MWh

